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Abstract. A study is made of the rings A~of r-order differential invariants of
linear frames on a differentiablemanifold X with respectto the Lie algebraof
the vectorfields of X It is demostratedthat, locally, such rings are differentiably
finitely generatedandcanonical basesare determined.Theglobal structureof the
rings A~andthat of the subringsA. ~ Ar of differential invariantsunderthegroup
of the diffeomorphismsof X are determined. As an application of the theory
the problem of local equivalenceof completeparallelismsis solved,demonstrating
that the equality of the basicdifferential invariantsof twofields of linear frames
are sufficient conditions for their formal equivalence(and hence,analytical).

INTRODUCTION

Study of the differential invariantsof <~geometricobjects>>on a differentiable

manifold with respect to the group of the diffeomorphismsof the manifold
is a classicproblem in differential geometry. As is known, the equality of the

invariantsassociatedwith two of such objects are the naturalnecessaryconch-
tions for their local equivalence;this problem isrecognizedas beingfundamental

to this discipline. Given a closedsubgroupG of GL(n, IR), j~p~: E -÷ X is the
fibre bundle whose sectionsare the G-structureson a differentiable manifold
X of dimension n ([6]) and JT(E) is the correspondingr-jet bundle,an r-order
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differential invariant of theG-structureson Xis definedas a functionfE C~(JrE)

such that for all diffeoniorphisms r of X one hasfo~~= f. where ~ is the

r-jet prolongation of the naturallifting f of r to E. The two basic questionsof

the theory are now: to study under which conditions the rings defined by such

invariants are differentiably finitely generatedand to attempt to fund explicit

basesfor them that havegeometricmeaning.
The infinitesimal version of the theory that is: invariance with respect

to the Lie algebra of vector fields of X is clear and can be inserted in the

general theory of differential invariants with respect to an infinitesimal Lie

pseudo-group,a classic theory that in the 70’s decadereceived considerable

thrust by application of the cohomological methodsof Spencer(see for example

[8]).

In this version, the rings Ar(G) of r-orderdifferential invariantsof G-structures

are no more than the first integralsof the involutive differential systems,4~Ir(G)

generatedin J’(E) by the r-jet prolongationsD(r) of the natural liftings D to

E of thevector fields D of X. The crucial point of the problem is now that the

differential system~ r(G) generally,are not regular over the whole of Jr(L).

Unfortunately, these methods,whoseinterest for the theory of invariant diffe-

rential equations by an infinitesimal Lie pseudogroupis undeniable,are not

appropriatefor the casein question, precisely becausethe invariance Lie alge-

bra of this problemis too broad.

However, there seemsto have beenmore successfulin the relation recently

found betweenthese invariants and gauge theories,a theory whose geometric

formulation was also establishedin the decadeof the seventieswith apparently

no referenceto differential invariant theory ([1. 2. 3]). Indeed,carefulexamina-

tion of one of the formalisms developed to understandGeneral Relativity as

a gauge theory — the formalism of T.W. Kibble [5] — suggests that differential

invariants of G-structuresshould be consideredas invariants of linear frames

accordingto the following idea([4]):
If ‘iT : L(X) —~ E is the principal G-bundleoverE defined by the action of G

on the bundlep : L(X) —~ X of the linear framesof X ([5]). then their r-jet pro-

longation definesa submersionJr(iT). Jr( L(X)) Jr(E) that inducesan injection

.4(G) Jr(n)* Ar

of the ring A,(G) that one wishes to study in the ring Ar of the corresponding

r-order differential invariants of linear frames over X (that is, the {e}-structures

over X, e = identity of GL(n, IR)). The imagesubring J~’(lr)*Ar(G) is identified

with the first integrals of the differential system,//~fr+ vr(G), where~ is

the differential system defined by the r-jet prolongationsof the naturalliftings

to L(X) of the vector fields of X, and V’(G) is that generatedby the J’(ir)-
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vertical vector fields of Jr(L(X)). The formalism of T.W. Kibble - which corres-

ponds to the case X = lR’~’, G = 0(3, 1) and wherejfr + vr(G) is simply the
rt~l derivative of the gaugealgebra of the natural representationover the linear

frames (~xvierbeins>>)of the Lie algebraof the inhomogeneousLorentzgroup —

suggeststhat the differential system,~
1/fr+ vr(G) may be easierto deal with

than the original system~‘/4’r(G) It is exactly on this substitution that we base

our treatmentof the differential invariants of G-structuresandin this first article

we begin with the simplest case possible.G = {e}, which we logically believe

should be usedto start sucha program.

The work is divided into three well separatedparts.In the first two (~§ 1, 2, 3

and 4) we determinethe rings ~r of differential invariantsof frameswith respect

to the Lie algebraof the vector fields of X. In the third part (p5), the sameis
done for the rings A ~ ~r of invariants underthe group of diffeomorphisms

of X.

The solution to the problem cannot be more completeand satisfactory.The

involutive differential system,J//r is regular overJ”(L(X)) (Theorem2.2) which

allows us to conclude, by application of the Frobeniustheorem,that the rings

of invariants Ar are differentiably finitely generatedon a neighbourhoodof

every point of F(L(X)). Additionally, from the notion of torsion of a linear
connection, it is possibleto define canonical basesof the rings Ar that allow us
to solve in a very simplegeometricfashionthe secondmain problemof thetheory
of differential invariantsin this case(Theorem4.8). One fundamentalingredient

for the explicit integration thus carried out is the existenceof n vector fields
U I’’’’’ lD~canonically definedon J~(L(X)), which allow us to construct,

from each differential invariantf of order r, n differential invanantslD1f
lDfoforderr+ 1 (~3).

Finally, Theorem 5.7 provides the global structuresof the rings of invariants

A and A’. It is also demonstrated(Theorem 5.5) that the bases of invariants
obtained not only provide the necessaryconditions for the local equivalence

of fields of linear frames, but also sufficient conditions for the formal equiva-

lence. The latter, which implies as usual sufficiency in the analytical case, is

not trueat the differentiablelevel.

1. PRELIMINARIES AND NOTATIONS

(1.1). In what follows, X will standfor a n-dimensionalconnectedC~manifold

and p : L(X) —~ X will denoteits bundle of linear frames. L(X) is a principal

fibre bundle over X whose structuregroup is the full linear group GL(n, IR).
This bundle is endowedwith a IR’

1-valued 1-form 0 = (0 0~),the so-

called canonical form of L(X). Any coordinatesystemx
1,..., x,~on an open
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subsetU of X inducesa coordinatesystem (x., z..), 1 ~ i, j ~ n, on p~1(U)

by the formula

(1.1.1) u = ((a/ax
1) (a/ax )) . (z.~(u)), u Ep

1(U)

The canonicalform is given in termsofaninducedsystem by

(1.1.2) 0~= ~ z”dx., 1 ~

where(z”) = (z..Y I standsfor the inversematrix.

Any diffeomorphism r of X induces an automorphisnii~of L(X) mapping

the frame u = (D~ D~)at x into the frame r(u) = (r~D~ r~D~

at r(x). If D is a vector field on X, we denoteby r ‘ D the vector field defined

by (r ‘ D) = T~(D
7_ ~ More generally. if P is a differential operatoron

X, we denote by r ‘P the differential operator of the same order given by

(T . P) (f) = PifoT)or ~, fE C~(X).If Q is anotherdifferential operator. then

r .(P0Q)rr(r ‘P)o(r ‘Q).

PROPOSiTION (1.1.3) (Cf. [6], Ch. VI, Prop. 2.1). Given a vectorfield D on

threeexistsa uniquevectorfield D on L(X) suchthat

(a) D is p-projectableonto D,

(b)L50 = 0.
Furthermore,D satisfiesthefollowing properties:

(c) If the local 1-parametergroup r1 inducesD, then inducesD; hence,

D is invariant under right translations, i.e., RA ‘ D = D for all A E GL(n. li~).

(d) The mappingD -~D is a JR-linear in/ection ofLiealgebras,thus[D1, D, F~=
= [D1, D2 ]for all vectorfields D1, D2 on X.

The vector field D is called the natural lift of D to L(X). It is easily checked

that if D = ~. u.(a/ax.), then:

(1.1.4) D = ~ u.(a/ax.) + ~ ~1(a/az~).

u.. = ~ zhl(auliaxh).

(1.2). Let p: Y-÷X be an arbitrary fibred manifold. We denote by

P(r) : Jr(y) -÷ X the r-jet bundle of local sectionsof p, and by f’s the r-jet exten-
sion of a local section s of p. Moreover, ‘ir’~ : J’~fl .÷ Jk(y) r ~‘ k, standsfor

the canonical projection. Let m be the dimensionof the fibres of p. so that
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dim Y = m + n. Eachfibred coordinatesystem(x1, ye), 1 ~ i ~ m, 1 ~J ~ fl,

for the projection p induces a coordinatesystem(x1,y~), a ~ r, for Jr(y)

definedby: y~(f~s)= D°(y1o s) (x), where D°= a
0/ax~i . . . av~n,a =(o~,

a) E IN’3 and IaI= a
1 + . . . +a,~. Note thaty~=y1.We also write

(/) the multi-index whosecomponentsare (/)~= 1 ( I ~ n. Similarly, (jk) =

= (j) + (k), (jkQ) = (/) + (k) + (Q), andso on. The notationa ~ (3 for multi-

indicesmeansa,~<!
3~for all i = 1 n.

Let p’ : Y’ -* X’ be anotherfibred manifold. 1ff: Y-~’Y’ is a fibred mapping

(that is, f maps the fibres of p into the fibres of p’), then thereexists a unique
differentiablemappingf making the following diagramcommutative:

Y

p -

x _____

When f is a diffeomorphism, we can define the induced mapping
j.(r) : J~(~),. Jr(y~)by f~(j~s)= ‘f(x) (f o s o f-1). If X = X’ andfis the

identity of X, we shallalso write Jr(f) insteadof j(i’),
We should recall that if E is a vector bundle over X, thenJT(E) also has a

nauralstructureof vectorbundleoverX.

(1.3). We denote by V(Y) the vector sub-bundle of the p-vertical tangent

vectors of T(Y). We shall also write T(Y/X) wheneverwe needto specify the

basemanifold.
The fibre bundle JT(Y) is endowedwith a (‘ir~ )* V(J’~(Y))-valued 1-

form O~,the so-calledstructureform of the r-jet bundles,geometricallydefined

by means of the notion of vertical differentiation (see [9]), and whoselocal
expressionis:

(1.3.1) or= ~ e~n(a/ay1)
i=I aI<r

0’ =dy’
0 — ~ Y~+U dx,.

A vector field D on Jr(y) is said to be an infinitesimal contacttransforma-

tion if for a given derivation law V on V(f
1(Y))thereexistsanendomorphism

A of (ir I )* J/(,J~_1(Y)) suchthat:

(1.3.2) LDOr .40 ~r,
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where the Lie derivative is takenwith respectto V([ 7]). The definition is easily

seento be independentof the derivationlaw V chosen,andwe have:

PROPOSITION (1.3.3) ([9]). For even vector field I) on 1 (ilot necessarilyp-
projectable) there exists a unique infinitesimal contact transforniation D( r)

~ j~. Y)projectableonto D. Furthermore.

(a) If D is p-projectableand r,, is its local J-para~netergroup, thenr~>induces

D~.
(b) Do is (irT )-projectable onto D(r 1) for all r > 0 and even’ vector

field I) }~

(c) The mapping D - Do is a p-linear injection of Lie algebras, thus

[D’. D” ‘(r) = tD~~D~’)] for all vectorfields D’, D” on V.

The vector field D(r) is called the r-order infinitesimal contact transformation

associatedwith D.

2. DIFFERENTIAL INVARIANTS ON L(X) AND THE ASSOCIATED DIF-

FERENTIAL SYSTEM

By composing the natural lift of a vector field D on X to L(X) with the r-

order infinitesimal contact transformation associatedwith D, we obtain an

injection of Lie algebras:D .~ -* D(r)~by virtue of (1 .1 .3)-(d) and (1 .3.31

DEFINITION (2.1). A differentiable function f.’ Jr(L(X)) -~ IR is said to be an

r-order differential invariant if Do f = 0 for ever) vectorfield D on X.

The set of r-order differential invariants constitutes a subring ~4r of

C~(J”(L(X)fl.The purpose of the present paper is to study the structureof

the rings of invariants.4.

THEOREM (2.2). Thereexistsa unique homomorphismof vector bundlesover
Jr(L(x))

~. P~jr+ 1(TX) T(Jr(L(x)))

such that ~ j~ 1D) = 1~(r)(f’s) for even’ local sections of p and every

vectorfield D on X. Moreomer,wehave:

(i) Thehomomorphisminducedat eachfibre

(TX) ‘ Tur(L(X)))
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is injective for all j~sE J”(L(X)). Therefore, the image of ~r is a vector sub-

bundle Im ~r of T(J r(L(X))).
(ii) Let us denote by ~,I1r the sheaf of C$r(L(x))modules determinedby

the sectionsof Im ~r’ Then,,Jf r is an involutive, locally free sheafof modules

of rank n(”i ~ ~ 1). spannedoverCr(L(X)) by all vectorfieldsD~.

(iii) A differentiable function on Jr(L(X)) is an r-order differential invariant

if and only if it is a first integral of~#/’.Thus, thering of invariantsA,, coincides
wit/I the ring of first integralsof an involutive differential system,

Proof The uniquenessof tbr is obvious. In order to prove its existence,it will
clearly be sufficientto provethe following:

(2.2.1). The equality j~
1(D) = I (D’) in j’~ I (TX) implies ~(,,)( j~s)=

= D (r) (js) for everylocal section s definedon a neighbourhoodof x E X.

Proofof (2,2.1). With notationsasin (1.1.4)and (1.2) we have

D(r) = ~ ~~(a/a~~)+ ~ u~(a/az~),
1 1,1 n(=O

where u~= u
11, and accordingto (l.3.3)-(a) the rest of the functions are given

by

d
u~= .15 (z”) = — (z

1’ ~(r)) =n (r) ~ dt ~ “ t0

=D0uj,_~~()z~+(Q)D0~uQ
t

andfrom the formula for u.
1 in (1.1.4)we obtain:

(2.2.2) u” = ~(~( ) ~ D~~+ (Q) (u1) —

~a..
— zuj D0~ (u ~)(3

1~<0

The right hand side in (2.2.2) at a point j~sonly dependson

a ‘~ r + 1; that is, u”(j~s) only dependson ~
1(D) thus proving (2.2.1).

We shallnow prove the last threestatementsof the theorem.
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(i) We setSi] = c s. We proceedby recurrenccon r. For r = 0. the condition

D(s(.v1) = 0 is equivalent to u1(x) = 0 and u~,(xI = , s111(.vI ( öit~/~x11) (x I = 0.

by virtue of ( 1.1.4). Since the matrix (s1(.v)) is invertible, from thesecondequa-

tion we obtain ( au/a.v1 ) (x) = 0: henceI ‘(D ) = 0. Let us assumethat ttie rela-

tion D~r I) (j~ s)= 0 implies j~(D) = 0 for some r > 0. If D(,,) ~ = 0.

according to (1 3.3) - (h) we also haveD0 (f 1~)= 0: thus by the recurrence

hypothesis it follows that D°u.(x) = 0 for all a ~ ,‘, and from (2.2.2) for

= r we obtain:

u’ (f’s) = (D~ (v) a1) (x) = 0.

Since (s~.(x))IS invertible, (D
0 + 05~l,)(X) = 0 for cv = r: i.e.. (D~u.((.v) = 0

for~ a~=r + 1. Therefore.j~ 1(D) = 0.
(ii) Since .if~ is the sheafof (differentiable) sectionsof’ a vector bundle, it

is clear that. fR is locally free, andsince ~r is injective we have: rank of f/fr =

1i+r+1
dimensionof the fibres of jr* (7’.k ) = ii . Moreover,the sections

r + I
~r-~‘(D) span j~ (TX): thus their images.D~. span. f/fr Therefore, if I), D’

are two vector fields of #“. we can write D = ~ 1•D~r•D’ = ~ f’L~”,andthen

from (1.3.3) - (c) we obtain

[D.D’]=’~JJf~D”

-~ (DL) Do + ~ [D’, D”]
1

thus showingthat. f//i is involutive.

(iii) This follows immediately from definition (2.1) and the fact that ,

is spannedby thevector fields D0,,1

3. A CANONICAL PROCEDURE TO OBTAIN NEW DIFFERENTIAL IN-

VARIANTS

(3.1 ). With the notations as in (1.2). let us denote by I ( Y) the projectivc

limit of’ the system (Jr( Y), ir~ ) endowed with the sheaf of rings .~ = direct

limit of (~ ~ I)’ where : J~(1) 1c1 ~ stands for the canonical pro-

jection. An algebraic derivation (over IR) of the sheaf’ of rings .~ is said to be

a vector field on .I~(VI. We can also def’ine differential forms. etc. on .J~’I 1).
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We denoteby D the formal lift of a vector field D on the basemanifold X to

J~(Y). In a fibredcoordinatesystem(x
1. y.) we thushave:

(3.1.1) a/ax1=a/ax1+~ ~ y4(/)(a!ay).
i :~I=o

Let D be a vector field on Y. SinceD Or) projects onto D(r_ I)’ the system

(D~) definesa vector field D( on J~(Y) that is completely determinedby

thecondition:Do (Jo ir~)= (D~f) 0 7T~for all fE C~~Jr(Y))

If f : V -÷ Y’ is a fibred mappingfor which f is a diffeomorphism(notations

as in (1.2)), then the inducedmappingsf~ : Jr(Y) ..÷Jr(y) define a morphism

of ringed spacesf
0~’ : (J~(Y)..il ) ‘-~. (J~(Y’), aI ‘). These considerationswill

be mainly appliedto Y = L(X).

THEOREM (3.2). There exist globally defined vector fields ID
1,..., ID on

J~(L(X)) uniquelydeterminedby thefollowing conditions.’

(a) Or(lD.) = 0 for all positive integer r and / = 1 /1, where0r is the

structureform onJ~(L(X)).
(b) 01(D,) = &., where0~,,.., O,~are the componentsof the canonical

form on L(X).
Furthermore,suchvectorfieldsfulfil thefollowingproperties:

(i) ID1 mapsC~(Jr(L(X)))into C~~jr+ I (L(X))). In fact, iffE C~(Jr(L(X)))
and s(x)= (D~ D”) we have:

(3.2.1) (D1f)(j~’
1 s)=D~(fof’s), 1 ~

(ii) The vectorfields ID
1 commute with the lifting D~yi.e., ~ ID1] = 0

for every vector field D on X. Hence, if f is an r-order differential invariant,
thefunctions ID1 f ID,3fare differential invariantsoforder r + 1.

Proof: Thestructureform OfJr(L(X)) is given by 0r = ~, ~ I<r ~ u a/az~
whereO~’= dz~’— ~. Z”+(k) dxk. as follows from (1.3.1)and(1.1). By imposing

condition (a) and(b) of thestatementon an arbitraryvector field ID1 =

+ ~ ,. ~ Xh~a/aZ~’we find,
hi of

0”’(ID~ =X~ —~ x z~’j
o~ / ~j k kj o+(k)’

0(D1) = ~k Xk./ z~=

From the secondequationwe obtain = z~1.andby substitutinginto the first

equationwe haveX’” = ~ z ,z
1’’ , . Hence,oj k kj o+(X)

(3.2.2) ID
1 = ~. z.. (a/ax. + ~ ~ (a/az~))
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= ~. z..
1 1] 1

With the hypothesis of (i) we now have:

(ID. f) (jr+ s) = ~. z.(s(x)) (of/ax.) (j~+ i~)

= ~. z(s(~) (a/a.v.) (f ~~r~) Ox) = D’,, (fo j~s).

Furthermore, from (1 .3.2) it follows that L~~
0r = 0r Thus.

(L~0r) (IDJ) = V~()0’(1D1) — 0~(L~).1D1])= .400r(1D1)),

and hence6r(D~, ID1]) = 0; or equivalently.0~([D0~. ID1]) = 0. Moreover,

from (1.1 .3)-(b) we haveL~0 ) 0. = Oandthus,D0 0.(IDi - 0.(fD~,ID.]) =0;

that is. 0.([D~. ID.]) = 0. Since (0°, 6.) is a local basis of the differentials of

J~(L()(0. we conclude that ~ ID1] = 0. The last part of (ii) is now imme-

diate, thus finishing the proof of the theorem.

REMARK (3.3). Using (3.2.1 ). it is alsoeasyto see that ~0~) . U1 = ID1 for any

diffeomorphism ‘r of A’. Actually, if I’ is a differentiable function on J”IL(X))

ands=(D
1 D’1),thenwehave:

~ .ID
1)~(j~

1 s)=DJUo~))(jr+~(,,) (~ oscr))

= (T1 ‘DJ)r~ 1(x) (fo f’s oT) = D~(fo f’s) = (D
1f)(j~1~),

4. THE BASIS OF THE RING OF DIFFERENTIAL INVARIANTS

(4.1). As is well-known, there exists an affine bundle K(X) —~ A’ modeled

over the vector bundle T*(X) ® T*(X) ® T(X) whose global (differentiable)

sectionscan be identified with the linear connectionsof A’; we can thus consider

the r-jet extensionj~(V) of a linear connectionV at a point x E X.

The proof of the following proposition is straightforward.

PROPOSITION (4.2). Let V be a linear connection of X, and T and R the torsion

and curvature of V. respectively. Wehave:

(i}f l(V~D)onlydependson.jtI(D),j~(D~)andf’
1(V).

(ii) i ç. (T) only depends on j ~(V).
(iii)j~ 1(R) only depends o~/r(V).

(iv) (VrJQ ) only depends on f’ (T~) and j’ (V), where T~’ is a tensor field

on X of covariant degreep andcontravariant degreeq.

(4.3). Every basis D1 D’7 of the module of vector fields on anopen sub-

setUof X definesa linear connectionV on U by the condition
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(4.3.1) VDjD’=0. 1~<i, j~<n.

Let s : U -+ L(X) be the section determined by the above frame; i.e.,

s(x) (D~ D~),x E U. If U is a coordinate domain with coordinates
(x1...., x~),and we set s~1= z11 o s,then it is easy to seethat thecomponents

of V are given by

(4.3.2) “~k ~ (aslh/axI)s~.

These formulas show that Jr_
1(V) only dependson i’,s. We call /~1(V)

the (r — 1)-jet of connectionassociatedwith the r-jet of frame/~s.

According to (4.3.1), the curvature of V vanishesand the torsion is given

by

(4.3.3) T = — w1 A ~k ® [D’, Dk],

wherew , . . . , w° is thedual coframe.

DEFINITION (4.4). Let us definefunctions f~k:J1 (L(X)) -# IR (i, j, k = 1 n)

as follows: ~ are thecomponentsof the torsion T at x E X of the linear

connectionV definedby theframes in the basiss(x) = (D,~ D’3); that is,

(4.4.1) T(D’,D~)= ~fk(x)D~.

Recall that T~= j~(T)only dependson V~= j~(V),and j°(V) only depends

on/ks ((4.2)-(ii) and (4.3.2)).

PROPOSITION (4.5). The functions f~,kis the previous definition arefirst order

differential invariantssatisfying:

(4.5.1) [IDf,lDk]+~IfkJD.=0,

whereID
1,..., ID are thevectorfields introducedin (3.2).

Proof As usual,we set = z~1s. From(4.3.3)and (4.4.1)we obtain

f~k~I~~)= ~ (shk(x)(a5Q./axfl) (x) —
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— s
111(x)(aslk!a.v/I ) (xl) slv(v)

That is,

(4.5.2) f~.= ~ (z~.Z~) Z/Z~))Z1v.

Ii.

which proves that f’~. is a differentiablefunction on J (L(X)). Moreover, since

[a/ax., a/axk] = 0, from (3.2.2)and(3.1.1)we deduce:

EID~.Uk] = (ZhJ Z~) Z/~Z~ ~
Ii ,

Hence,

(Zhk Z~) zh.z(h))Z ID~=

by virtue of (4.5.2).
Finally, for any vectorfield D on X. (4.5.1)yields

~ j’~k

1~+ ~~oi )‘fk ~1D1~lJfk [D~, ID.] = 0,

and the first and the last termsvanish becauseof Jacobiidentity and (3.2)-(ii).

Therefore,D
0 1) ~Jk = a

DEFINITION (4.6). For eachr E lN let us define,fiinctions

‘~i j,,kv~
1 ~ (i.j ~ k. ~ = 1 ‘i)

as follows: ~ /,,kQ~~~51~) are the componentsof the tensor(V’T)~in tile

basis s(x) = (D~ D~). where T i.s the torsion of’ the linear connectionV
definedby theframes; that is,

(4.6.1) (VrT) (D~1 D’r, Dk, D~) L°~~‘r~~’~1s)D~.

REMARK (4.6.2). The definition is correct, because(VrT)~ only dependson

j~(V) and j~,(V)only dependson j~ ~ ((4.2)-(ii) and (4.3.2)).Note also that
for r = 0 the above definition coincideswith (4.4). Accordingly, we agree that

ir~ forr = 0 meansf~~.
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PROPOSITION(4.7).

= UI~U’kv~

(u)131 ... J,,kQ isadifferentialinvariantoforderr+ 1.

Proof Proceedingby recurrence on r, it will be sufficient to prove that

f~° j k2 = U11(f2 . J,,kQL Let us assumes= (D
1 D”)onan open

su~set~. By virtue of (4.3.1)we have:

1r~ (~r+ I s)D~=

=VD/j ((V” I fl(D’2 D1r D~’,D~)).

From the very definition of the functions~ it follows that on U

we have:

(V~‘T) (D’2 Dir, Dk, D1) = ~ ~ /~kQ /rs)DI

and againfrom (4.3.1),

VDJ ((V’~-I T) (D’s D’r, Dk, D2)) =

ir~ OlrS)Di

= ... ~ (/~ s)D’~.

Hence,

J,,k~(i~ s) = D~i ~ “Jr ki ~ /r~)=

—11D f~

— ~ Ii ~ 12 ,.~ ~kQ’klx 5

by virtue of (3.2.1). Part (ii) now follows from part (i), Prop. (4.5) and(3.2)-
(ii). U

THEOREM (4.8). For every positive integer r, let F be the set of functions
k Q defined in (4.6) whose indices satisfy the following conditions:

11 101

(a) O~m~r—l,
(b) /~~.. . ~ j ~ k, and k < 2.

Then:
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(i) The numberof functions of F,, is .V , r = dim J r(L( X)) -— rk //~r

(ii) The differentials of the functions of F are linearli’ independentat every

point ofJ”(L(X))

(iii) Everydifferential invariant of order r can be locally written as a differen-

tiable function of thefunctionsofF.

Proof (i) Let be the set of the system of indices (j J,~.k. O~)such

that: /~~“ . . . ~ /,,, ~ k, j~...., /,,~, k; 2 = I. a, andJ,~,, the subsetof I,,~

definedby: j~ ~ ‘ ‘ ‘ ~ j,,~~ k ~ 2. For eachin, the systemof indicesin J,,~ I~

areexactly thosewhich fulfil conditions(a) and (b) of thestatement.The number

/l + in , , n + in + 1
of elementsoff isii and thatof I is . Hence,thenumber

10 a + I in + 2

of functions of I” is

~ a + in a + in + 1
‘ ii —n =

in+l ,n+2
1110

~ n+r n+r+ 1
= n + ii — n = dim J”(L(X)) -- rk.11f’,

r r+I

as follows from (2.2) - (ii) and the identity

n + k - 1 = n +r

k=O k r

(ii) Let (U: .v ~) be acoordinateopensubsetof X. SetF = J~(L(U)).

Starting with (3.2.2) and by recurrenceon r, it is easily checked that thereexist

functions~ ,~ E C’~(J” ~ suchthat.
(*) ff~ colD, =

11 Jr-I

= ~ (z~
111. Z. ~

1r a/ax. o ,,,o a/ax.

+ FO ~ (a/ax)°.
to t<r-- I

where(a/ax)° = (a/ax
1 )° I , , , (a/ax~)°n Oneshouldrecall that

[a/ax1, a/axk] = 0, in such a way that the compositionsof the vector fields

a/ax,can bedealtwith like polynomials.
Similarly, starting with (4.5.2) and by recurrenceon r, it is also seenthat there

existfunctions G Ir -- ~ E C~(Jr_ 1) suchthat,
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(**) (a/ax11 o . , , o ã/ax~ I ~ =

~ (zz~~ Jr_Ih) _Zhk Z(J~ I,,_]h))z +G1 ,,, J,,_1k2~
h ,m

Let us denote by df the restriction of df to the vector sub-bundle
T(J~7Jr-I), for every fEC°°(J”). Hence, d(g,f) = gdf whenever
g E C~(J” I) From (*) and(**) we now obtain

(+) “ 1r-1~ =

E . ~ (z~~ . ~ I ‘r— I Z~ ) ~ “ ‘r— h) —
h m

— . , ~ (z~~ . . .z1 i ‘r— I Zhk ~im ~ dz~1 “ ~r—
I’”’ ‘r—I h,m

for all r ~ 2.

Given a point /~5 Ejr let us choose a coordinate open neighbourhood
(U,’x I’’’~’ x~)of x, contained within the domain of s, such that s(x) =

= (D~,..., D~) = ((a/ax~), . . . , (~/~x~ or equivalently,z11(s(x))=

We shall now prove that the differentials of the functions of F,, are linearly

independentat /~sby recurrenceon r. Assume ~• ~ X~ d.1 f~2= 0 for
r = 1. Restrictingto T.1 (J’/J°), from (4.5.2) and the propertie~of the coordi-

natesystemchosen,w~obtainE~ <2 Q (d. Z~) — d.1 z(k)) = 0. Hence,
= 0. Now, let us assume

~mirx~1 ... f01k2~0
m=O i k<Q ~ Im ~ k

forr~’ 2.

By restrictingto T.,, (J”/J”” 1), we obtain:

ixs

(++) L ~ . ‘ “ ‘r- 1k2 1~s~I“ ~ 1kQ =

I k<Q ~

because~ I kQ belongsto C~(J~I) for m < r — 1. Thus, by virtue of the

recurrencehypothesisit will be sufficient to prove that ~I ‘‘ Ir— I kQ = o~From
(+) and the propertiesof the coordinatesystemchosen,we obtain

d ci —d ik d 12~X1 ‘r Sf11... i~_1k2 1~ Z ~ ~ I 2) — (~1“ ‘r_
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Let us considertwo systemsof indices h, b. c, a
1...., ~ I and i. k. 2.

‘r suchthatb <c. u~~ ... ba,, ~ band k < 2,i~~ ‘ ‘ ‘~1r ~ k.
Wehave:

1 .,,k / hI’
(1) - . z , =~0, otherwiseit would be Ii = i I~ =

Jr I /2) ... a h
(a r i b) = ‘ ‘‘ ‘r- 1 2). F~owever.the inequalitiesj~~. . ~ ~k =

= c > b, 2 > k = c’ > b imply that the first b componentsof the multi-index

2) vanish, thus contradicting that . . . .1,, ) = (a1 . 1 b).

(2) az(. k)/~z(~ . a h) ~ 0 if and only if/i = i, c = 2. a1 =

=/“1,b=ksknce(a~ ...a 1b)=(j1...j ia1~~~

~~ar I >~‘‘1 ~‘‘~“r I ~kimplya1 =11’’’’’ a ‘r 1,h=k.

Formula (x) together with (1) and (2) show that by evaluating(++) at the

tangentvector(a/az~ . a 1h)~f~sweobtainX~ a,. h~ 0.

Part (iii) follows from parts(i) and (ii). andfrom (4.7)-(ii).

5. THE GLOBAL STRUCTURE OF THE RINGS OF INVARIANTS

DEFINITION (5.1). A differentiable function f: J”(L(X)) —~ IR is said to be in-

variant under diffeomorphismsif f ~ ~ir(r)= f for everydiff’eomorphisni T of X.

The set of r-order invariants under diffeornorphismsconstitutesa subring
A,~of C~(Jr(L(X))).

PROPOSITION (5.2). Every invariant under diffeo,norphisins is a differential

invariant; in other words, A’ C Ar

Proof Let f.’ J”(L(X)) -÷ JR be an invariant under diffeomorphisms.Every

vector field D on X with compactsupport generatesa global 1-parametergroup

of diffeomorphismsr~.Since f is invariant by ~ we haveD(,.) f = 0, and

since the vector fields with compactsupport are densein the setof vectorfields

of X with respect to the (‘~ topology, we concludethat D(,.) f = 0 for every

vector field D on X. .

PROPOSITION (5.3). The functions f,1 I,,kv introduced in (4.6) are invariant

underdiffeoinorphisms.

Proof According to (4.7)-(i). it will be sufficient to prove the following two

properties:
(5.3.1) 1ff is invariant underdiffeomorphisms.then 1D~f is also invariant under

diffeomorphisms.
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(5.3.2) f~
2is invariant under diffeomorphisms.

The second statement follows by transforming (4.5.1) by ~ taking into
account that ~°°~ ‘ ID. = ID1 for every diffeomorphismr of X. As for (5.3.1),

according to (3.2.1) we have:

~ ~(r+ I)) (f’+ s) = (T . D’)~(fo j”(~roSo T 1))

=(T.DJ)T(X)Uo~(r)o1TSoT_I)=(T.DJ)T(X)UoITsoT_I)

D’~(foj
Ts)=(1D

1f) (j~s). U

(5.4). Let G~be the set of the r-jet extensionsj”~r at x E X of invertible
(differentiable) map-germs r : (X, x) —~ (X, x). It is not difficult to provethat

is a Lie group with respectto the topology inducedfrom J
T(X, X) and the

n +r

composition of jets, of dimension a r —- n, which has two connected

components. Its identity component, consisting of the elements of positive
determinant, will be denoted by G~.We also have a canonical projection of

Liegroupsir~ :G~-+G~forr~k.
Since ~ (T,~) = jre~o s o r I) for everyinvertible map-germr : (X, x) —~

-+ (X, x), it is clear that ~ (js) only depends on j~” I.~. We can thus define

a (differentiable) action on the right of ~ I on J”~(L(X’)),the fibre of P(r)

overx EX, by settingJ~s.~r+ I T = ~ 1)(r) (j~s).

Let

N
0,, = dim Jr(L(X)) —rk.,/It”’

2 n+r /n+r+1+n—nl
r \ r+l

be the numberof functionsofF,, (see(4.8)and(2.2)-(ii)). Wedenote by
with 0 ~ m ~ r — 1, i~~ . . . ~ 1 ~ k, and k <2 (conditions (a)

J1-Jm 01

and(b) in (4.8)), the coordinatesof IRNO,r andby

(5.4.1) ~r:Jr(L(X))~JRNnr

the mappingwhosecomponentsare the functionsf ‘ k of F~; i.e.,
Ii “ Ito

t’i . ~ .

imk’Q 11

Wealso write:

(54)~ .,rT — r

x ~
With the above assumptionsand notations, we havethe following important

result which solves the problemof formal equivalencefor completeparallelisms
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in terms of the invariants I”,,, r E IN (the <<restricted equivalence problem>> in

the terminology of E. Cartan),furthermoregiving thestructureof thecorrespond-

ing moduli space:

THEOREM(5.5).For even-’.v E X, themapping

irr :J”(L(X))-÷IR”n.r

defined in (5.4.2) is aprincipal bundlewit/i group G~ + I

Proof (1) ~ is a submersion.Part (ii) in (4.8) is equivalent to saying that

the mapping ~ in (5.4.1) is a submersion.Moreover, from (4.5.2)and (4.7)-(i)
it is easily checked that in any inducedcoordinatesystem(x

1, z’
t’’), a < r,

onehas~ / kQ/axl = 0 form <r, thusproving that ir~is also a submersion.
(2) ir~,is sur,iective.The origin of JR’~’n.r belongsto the image of ir~.,because

if x ,~ is a coordinatesystemon an open neighbourhood(~“of.v. the
torsion of the linear connectionassociatedwith the frame (a/ax a/ax
vanishes;hence,

(/“ (a/ax a/a.v )) = 0
11 1,,, x 0

for a11f
1 j k/2 EF.

Let s = (D
1 D°) be an arbitrary frame on U and let x

1,..,,.v be a

coordinate system with origin x mapping U onto IR°. If D’~ = ~. s..(z)(a/ax.)0,
z E U. for every X E JR we define a frame s~= (D~ D~,) by setting

= ~ s~1(Xz)(a/ax~)5.Then, D’~, = X(~ ‘ ‘ D’) for all X ~ 0. where

is the diffeomorphism r5(z) = Xz. Hence j”~ s = 1 )(r)(/r(~)) Note that

7’,x = x, becausex is the origin of the coordinatesystem.Sincef~ k~<
invariantunderdiffeomorphisms,

‘11 -. 1,~k ~ (i~~~) = f~ ... I,0 k ~ (i~(~))~

and taking into account that the framess = (D

1 D°) and?~s= (XD’ XD0)

have the same associatedconnection, from the definition of the functions

k ~and the above formula we obtain:11
f ‘r ‘~— ~/I, + I c< ( ‘r

“11 ... j,,,

7k2 ~

1x x’” ~ --- J,,,k2 ~1x

For any point t = (t~, I,,
1 ki~ E JRNn r we set

t = t’ . for XEIR X’�O.

A xm+l 11 ...101k2

Since lirn t~,is theorigin of IRNO,r, which belongsto the imageof ir~,.and since
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is a submersion,for all largeenoughA the point t\ also belongs to the image
of ir~ Thus,thereexistsj~ssuchthat

x°~~1“ Im~ ... 1,,
1kQ (1r5),

Hence, -

— + I ct (‘r ) . c~ (Jr )
j01k2 — ... /01ki ‘x

5 ~ ... /

01k2 x~X

Consequently, t Elm ir~.
(3) ~ actsfreely on J~(L(X)). Given a frame s = (D

1 D0), let us

considera coordinatesystemwith origin x suchthat D,~= (a/ax
1)~,1 >~j~ n.

For any invertiblemap-germr at x, we have:
r D’ = ~h.(sh1 o r—I)((aT./axh) o T~ )a/ax., wheres~= z.1 o 5, T. = x. 0 T.

Thus,~ (j~s)=j~s if andonly if:

(5.5.1) D°~ o r 1) ((ar/ax) o T )} (x) = D° 5(x),

forIaI~r, l~i,/~n.

By recurrence on r we shall prove that (5.5.1) implies the following:

(F,,) r1=x1+f~,,, with

where in is the ideal of the functions of C (X) vanishing at x, thus proving

that j~
1(r) is the identity. For r = 0, (5.5.1) yields (ar~/ax

1)(x)= ~ thus
proving (F0). Let us fix a multi-index a of order a = r > 0. From (5.5.1)
and Leibniz formulawe obtain:

~() D0(shIorI)D~((aTI/axh)oTI)(x)+
h 0<a<~

+D°(s.1oT

1) (x) +D°~(ar
1/ax1)or I} (x) =

=(D
0s,

1)(x), IaI~r, 1~i, j~n.

The first term on the right hand side vanishes because from the recurrence

hypothesis(F,,_ I~weconcludethat

(ar./axh) o T — = (afir I/axh) o r

belongsto mc. Hence

(5.5.2) D°(s11o r 1) (x) + D°{(ar~/ax,) o r I} (x) = (D°s~~)(x).

Moreover, the Taylor expansion of s~at x to orderr can be written as follows:
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s. D°s..(x)v0 0,~ (mod ,

0r 1
Ii I ii

a.

Trasformingthis congruence~ r I , we have:

s. - o r I — I)°s..(.v)x° ~ (mod ,11T I
II ii 1 ii x

since x~or
1 = .v

1--fi,,_1 or and ~ 1 o T I Emn~
1. Hence.

a T 1) (.v) = D°s
11(x).and formula (5.5.2) allows us to finish theproof.

(4) If ir~(j”,,s)= lr
t(jcs), t/Iere exists ~r+ I ~ E ~r+ I ~ that =

=

1r,~ , ~r->~

1T Let V. V be the linear connectionsassociatedwith the frames

s = (D1 D’>),T (D’ D°)and (.v ~). (.~ ) the normal

coordinate systems determined by the frames (D~ 11°~, (D~ D” ).

respectively. We set: s~= a .s, ~ = o F With the obvious notations. we

first prove:
(5.5.3) Let r be the unique diffeomorphism such that x< = A’

1 0 T, I <~ ii.

Then, r~ (j”s) = ~ if and only if D°s11(.v)= D°i~(v)for all a ~ r, I ~ 1,

j.~il,

We set s’=(r’D
1 r’D°).s.~=z.os. Since r(x)=x, we have

= ~(r) ~ It will thus be sufficient to show that D°7~
1(x)= f)>>s(x)

for a <r. Actually. we shall prove that(D°s~1a r = D°s11.

Transformingby r the identity:

Ia/ax1 [a/axlk. D’] . . . I =

= ~ (akS11/ax~1.. . ax1~)(a/ax1)

and noting that T a/ax1 = a/at., we obtain aks’yaT~1. . . ~ = (ahsII/axl
aA<k a r I which is equivalentto our previousstatement.

We now continuethe proofof (4). The hypothesisof (4) nieans

‘11 .. I> ~ = ~‘i J,~k~~’x~for allJ~1 . ~ El”,.. According to (5.5.3).
we shaltshowthat this hypothesisimplies: D°~11(x)= D°s~1C) for all a! ~
1 ~ i, j >~ a. We proceed by recurrence on r. For r = 1 the hypothesis is
F~2)x)— F~k(.v) = F~~(x)— F~k(x). As the coordinate systemsare normal,

we have F~2(x)+ !QkC~) = T~2(x)+ [~A(.v) = 0. Hence F~2(x)= F~~(x).
and the result follows from (4.3.2). Note that 5(x) = ~(v) = S... We can thus

assume r > 1. Let r be the diffeornorphism defined in (5.5.3). Transforming
by ~ the formulas (*) and (**) in the proof of (4.8) and taking into account

that ~ . ID1 = ID1, f~ . h/~x1= ~/a (andhence~ . (~/~x)°=
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z.. o = and the fact that f~ is invariantunderdiffeomorphisms,we obtain:

o~~U>rzF0
/1 ‘‘ Ir— I 11 “It— I

o ~(r--- I) —

I1 ... I,,—] ~ — II Ir— 1k~

From thehypothesisand therecurrencehypothesiswe thusconclude

(ars1a/axi1 . . a~1~I ax2) (x) — (a
ts

12/~x11.. . a~1,, axk)(x)=

I ~ (x) — (a~2/ax11. . . a.~ I axk)(x),

or equivalently,

(I) (D°- ~ (x) — (D0_~s~~)(x) =

(D0~~Sjk) (x) — (D0_(/2) s12)(x)

forall I a~=r+ 1,1 <k, 2~<n.

Moreover,asthe coordinatesystemsare normal,we have:

~/,kI”ik(t~ XIXk = ~j,k Fjk(tX)XIXk = 0 for A = (A11..., X0)E1R
0

11 tI <~

From the identity

(dr/d~F~k(tX)= ~ — D°F~ (tA)X°

we obtain:

(D° (fk) ~ )(x) = 0

f,k (a — (1k))! jk

for all a ~ 2, and similarly for the
1”k’~’ Using (4.3.2), we finally obtain:

~kak(D SIk) (x) =

(a!/(a —~ — (1k))! ~!(l —l aj))
h,j,k 0<,8<

0—(fk)

(D° - ~ (k) s111) (x) (D~s’~)(x),

where we haveused~. l/(a — (i))! = al/a!, andsimilarly fors. If! al = r + 1,

by virtue of the recurrencehypothesis from the above equation we deduce:

(II) ~ a~(D (k) sjk) (x) =~ ak(D (k) ~1k~ (x).

It is now easyto see that (I) and (II) imply (D° (2) s12)(x) = (D° ~
2~

12)(x)
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for all 2 = 1 n, thus finishing theproof of the theorem.

COROLLARY (5.6) (Local equivalencefor completeparallelismsin the analytic

case). Let s = (D’ D’>). .t = (D
1 D” ) be two frames of an analytic

manifold X defined on someneighbourhoodof a point x C X. There tilen exists

an invertible (analytic) map-germ r : (X, x) —~ (A’, x) sac/i that T ‘ = D’.

1 <1 ~ ii, if a,id only if’f~
1 / kvU~~~= f~1 j0, k~(I~) Jo,’ all f~ h~>k~C

El-’, rEIN.

Proof Let us usethe notationsof part (4) in the proofof th. (5.5). The diffeo-

morphism r in (5.5.3) is now an analytic isomorphism such that ~(r)(jr5) =

=/~,,(T •D

1 r .D’1) =J~(D1, . . . :D°) =jc~forallrEIN.Since’r SD’,

areanalytic, they aredeterminedby j~(r ~D1), j’ (D’). respectively. U

Remark. Given a frame s = (D ,..., D°) definedon an open neighbourhood
U. of a point x C X, the restrictionsof the invariants~ - k ‘ in ~ r (defined

‘I Jo
in (4.6)) to j~1s are precisely the families of functions F associatedwith s

in [10], pag. 342. If the families F,, and F,, correspondingto the frames
s = (D1 D”) and ~‘ = (D’ ,..., D°)(both definedon some neighbourhood

of x) satisfy the conditionsof theorem4.1 in [101,pag. 344, then it is clear that
our conditions for formal equivalence(-f-

1 , f,,, ~ = f’-~ . ><,,, kQ~’x~’

for all ,f~1 ‘01kv C F) are also satisfied. Since in the analytic case, formal
equivalenceimplies local equivalence,the converseis also true in this case;but

regrettablythis is not the casefor C equivalence.
We recall that a connectedmanifold is called reversible if it is orientableand

admitsan orientationreversingdiffeomorphism.

THEOREM (5.7) (Structureof the rings .4.. .4,,) Let ir
t be tile projection defined

in (5.4.1). We have:
(1) If X is non-orientable, then A = A,, = (~f)* (= (JRAflr)

(2) If A’ is orientableandnon-reversible,then

.4’ ~ = (~t)* C~(JRAn.r)~(~)* c~(JRx,1.r).

(3) If X is reversible, tile!!

= (r)* C~(IRNO,r),
= (~r)* C~(R’~11.r)~ (~r)*(.~(JRAflr)

tile inclusion A’ C Ar beingthediagonalmapping.

Proof: With the notations as in (5 .4), we set K~ = Kc’r ~ ; that is, K~ is
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the group of the r-jets icr of invertible map-germsr whoseJacobianmatrix
at x is the identity. It is easily verified that K~ is a connectedLie group.

Let us fix a point t C JRNn,r and let ~ : (ir~)1(t) -~ L(X) be the mapping
~r(/r~) = s(x). By using the above theorem, it is not difficult to see that r~

is a fibre bundle whosefibre over a point s(x)C L(X) is diffeomorphicto ~ I

Hence,(ir”) ‘(t) is connectedif and only if X is non-orientable,and if X is
orientable,then(lrr) 1(t) hastwo connectedcomponents.

Moreover, according to (4.8), the vector fields of the differential system

are the vector fields on Jr(L(x.)) tangentto the fibres of the submersion
irt. Therefore,Ar is the ring of differentiablefunctions on Jr(L(x)) which are

constanton the connected components of the fibres of irt.

If X is non-orientable, it thus follows that A,, consists precisely of the functions

in C~(JT(L(X))) which are constanton eachof the fibres of?; or equivalently,

A,, = (?)* C~(lR”~0.r), This formula showsthat A,, is differentiably generated
by the components ~

11 .. Im ki of?, which are functionsinvariantunderdiffeo-

morphisms.Hence,A’ = A,,.

Let us now assumethat the manifold X is orientable,andlet — be the equiva-
lence relation on J~(L(X))defined by:jçs ~jcs’ if and only if lr

T(ics) =

= ~‘(ic~’)= t, and ‘c~and Jçs’ belong to the sameconnectedcomponent
of(?Y 1(t)

The projection irt :Jr(L(X)) R>~°” induces a 2-sheet covering
~“ :J~(L(X))/—’—~ IR~Vn,rmaking the diagramcommutative

r

J~(L(X)) ‘~

NN/ JRn,r

where the horizontal arrow standsfor the canonicalprojection.Since~ is trivial,

wehave:

Ar = (q~C°°(Jt(L(X))/—)= (qt)* C~(C~)~ (qt)* C~(C)

= (~.r)*C0~(IR>~>n,r),~(~.r)*C~°(JRNO.r)

C’4’, C being the connectedcomponentsof Jr(L(X))/~,.If r~~~((q~Y C~) =

‘C’1 and _T(r)((qt)~‘C”)= (qr)~~I C’ for every diffeomorphism r of X

(i.e., if X is non-reversible),thenevery function in A,, is invariantunderdiffeo-
morphisms;henceA = A,,. If Xis orientable,thereexistsa diffeomorphism
r such that ~(r)((qr)—I C’1’) = (qr)_ I C, and a function f C A is invariant

underdiffeomorphismsif and only if f o r’~ = f. Part (3) of the theoremnow
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follows by identifying (qr) I~” with (q~) C~via ~ thus finishing the

proof. U
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